By Topic

Less Is More: Mixed-Initiative Model-Predictive Control With Human Inputs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Rahul Chipalkatty ; Department of Mechanical Engineering , Georgia Institute of Technology, Atlanta, USA ; Greg Droge ; Magnus B. Egerstedt

This paper presents a new method for injecting human inputs into mixed-initiative interactions between humans and robots. The method is based on a model-predictive control (MPC) formulation, which inevitably involves predicting the system (robot dynamics as well as human input) into the future. These predictions are complicated by the fact that the human is interacting with the robot, causing the prediction method itself to have an effect on future human inputs. We investigate and develop different prediction schemes, including fixed and variable horizon MPCs and human input estimators of different orders. Through a search-and-rescue-inspired human operator study, we arrive at the conclusion that the simplest prediction methods outperform the more complex ones, i.e., in this particular case, less is indeed more.

Published in:

IEEE Transactions on Robotics  (Volume:29 ,  Issue: 3 )