By Topic

Development of a Multichannel Vestibular Prosthesis Prototype by Modification of a Commercially Available Cochlear Implant

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Valentin, N.S. ; Sch. of Med., Dept. of Otolaryngology, Head & Neck Surg. & Biomed. Eng., Johns Hopkins Univ., Baltimore, MD, USA ; Hageman, K.N. ; Chenkai Dai ; Della Santina, C.C.
more authors

No adequate treatment exists for individuals who remain disabled by bilateral loss of vestibular (inner ear inertial) sensation despite rehabilitation. We have restored vestibular reflexes using lab-built multichannel vestibular prostheses (MVPs) in animals, but translation to clinical practice may be best accomplished by modification of a commercially available cochlear implant (CI). In this interim report, we describe preliminary efforts toward that goal. We developed software and circuitry to sense head rotation and drive a CI's implanted stimulator (IS) to deliver up to 1 K pulses/s via nine electrodes implanted near vestibular nerve branches. Studies in two rhesus monkeys using the modified CI revealed in vivo performance similar to our existing dedicated MVPs. A key focus of our study was the head-worn unit (HWU), which magnetically couples across the scalp to the IS. The HWU must remain securely fixed to the skull to faithfully sense head motion and maintain continuous stimulation. We measured normal and shear force thresholds at which HWU-IS decoupling occurred as a function of scalp thickness and calculated pressure exerted on the scalp. The HWU remained attached for human scalp thicknesses from 3-7.8 mm for forces experienced during routine daily activities, while pressure on the scalp remained below capillary perfusion pressure.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:21 ,  Issue: 5 )