By Topic

A Novel Reversible Data Hiding Scheme Based on Two-Dimensional Difference-Histogram Modification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xiaolong Li ; Institute of Computer Science and Technology, Peking University, Beijing, China ; Weiming Zhang ; Xinlu Gui ; Bin Yang

In this paper, based on two-dimensional difference- histogram modification, a novel reversible data hiding (RDH) scheme is proposed by using difference-pair-mapping (DPM). First, by considering each pixel-pair and its context, a sequence consisting of pairs of difference values is computed. Then, a two-dimensional difference-histogram is generated by counting the frequency of the resulting difference-pairs. Finally, reversible data embedding is implemented according to a specifically designed DPM. Here, the DPM is an injective mapping defined on difference-pairs. It is a natural extension of expansion embedding and shifting techniques used in current histogram-based RDH methods. By the proposed approach, compared with the conventional one-dimensional difference-histogram and one-dimensional prediction-error-histogram-based RDH methods, the image redundancy can be better exploited and an improved embedding performance is achieved. Moreover, a pixel-pair-selection strategy is also adopted to priorly use the pixel-pairs located in smooth image regions to embed data. This can further enhance the embedding performance. Experimental results demonstrate that the proposed scheme outperforms some state-of-the-art RDH works.

Published in:

IEEE Transactions on Information Forensics and Security  (Volume:8 ,  Issue: 7 )