By Topic

Freeway Traffic Modeling and Control in a First-Order Hybrid Petri Net Framework

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Maria Pia Fanti ; Dept. of Electr. & Inf. Eng., Polytech. of Bari, Bari, Italy ; Giorgio Iacobellis ; Agostino Marcello Mangini ; Walter Ukovich

The paper presents a model for freeway traffic performance evaluation and control in a First-Order Hybrid Petri Net (FOHPN) framework. Such a hybrid Petri net formalism includes continuous places holding fluid, discrete places containing a non-negative integer number of tokens and transitions, which are either discrete or continuous. In order to suitably describe the dynamics of the freeway traffic flow, we allow updating the transition firing speed as a function of the markings modeling the freeway traffic, as described by the stationary flow-density relationship. Moreover, we propose an online optimal control coordination of speed limits with the objective of maximizing the flow density. The use of FOHPNs offers several significant advantages with respect to the model existing in the related literature: the graphical feature enables an easy modular modeling approach and the mathematical aspects efficiently allow simulating and optimizing the system. The effectiveness of the FOHPN formalism is shown by applying the proposed modeling and control technique to a stretch of a freeway in the North-East of Italy, where a solution of an accident situation is considered.

Published in:

IEEE Transactions on Automation Science and Engineering  (Volume:11 ,  Issue: 1 )