By Topic

The capacity of binary channels that use linear codes and decoders

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
MacMullan, S.J. ; Dept. of Electr. Eng., Notre Dame Univ., IN, USA ; Collins, O.M.

This paper analyzes the performance of concatenated coding systems operating over the binary-symmetric channel (BSC) by examining the loss of capacity resulting from each of the processing steps. The techniques described in this paper allow the separate evaluation of codes and decoders and thus the identification of where loss of capacity occurs. They are, moreover, very useful for the overall design of a communications system, e.g., for evaluating the benefits of inner decoders that produce side information. The first two sections of this paper provide a general technique (based on the coset weight distribution of a binary linear code) for calculating the composite capacity of the code and a BSC in isolation. The later sections examine the composite capacities of binary linear codes, the BSC, and various decoders. The composite capacities of the (8,4) extended Hamming, (24, 12) extended Golay, and (48, 24) quadratic residue codes appear as examples throughout the paper. The calculations in these examples show that, in a concatenated coding system, having an inner decoder provide more information than the maximum-likelihood (ML) estimate to an outer decoder is not a computationally efficient technique, unless generalized minimum-distance decoding of an outer code is extremely easy. Specifically, for the (8,4) extended Hamming and (24, 12) extended Golay inner codes, the gains from using any inner decoder providing side information, instead of a strictly ML inner decoder, are shown to be no greater than 0.77 and 0.34 dB, respectively, for a BSC crossover probability of 0.1 or less, However, if computationally efficient generalized minimum distance decoders for powerful outer codes, e.g., Reed-Solomon codes, become available, they will allow the use of simple inner codes, since both simple and complex inner codes have very similar capacity losses

Published in:

Information Theory, IEEE Transactions on  (Volume:44 ,  Issue: 1 )