By Topic

On Achieving an Asymptotically Error-Free Fixed-Point of Iterative Decoding for Perfect A Priori Information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kliewer, J. ; Klipsch Sch. of Electr. & Comput. Eng., New Mexico State Univ., Las Cruces, NM, USA ; Costello, D.J., Jr.

In this paper we provide necessary and sufficient conditions for constituent codes in (multiple) concatenated and graph-based coding schemes to achieve an asymptotically error-free iterative decoding fixed-point if the maximum possible a priori information is available. At least one constituent code in an iterative decoding scheme must satisfy these conditions in order to ensure an asymptotically vanishing bit error probability at the convergence point of the decoder. Our results are proved for arbitrary binary-input symmetric memoryless channels (BISMCs) and thus can be universally applied to many transmission scenarios. Specifically, using a factor graph framework, it is shown that non-inner codes in a serial concatenation or check nodes in generalized LDPC codes achieve perfect extrinsic information if and only if the minimum Hamming distance between codewords is two or greater. For inner codes in a serial concatenation, constituent codes in a parallel concatenation, or variable nodes in doubly-generalized LDPC codes the corresponding encoder condition for acquiring perfect extrinsic information is an infinite codeword weight for a weight-one input sequence. For this case we provide a general proof which holds for all linear encoders and BISMCs. We also show that these results can improve the performance of concatenated coding schemes.

Published in:

Communications, IEEE Transactions on  (Volume:61 ,  Issue: 6 )