Cart (Loading....) | Create Account
Close category search window
 

Use of the Earth Observing One (EO-1) Satellite for the Namibia SensorWeb Flood Early Warning Pilot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

16 Author(s)
Mandl, D. ; Software Syst. Eng. Branch (Code 581), NASA/Goddard Space Flight Center, Greenbelt, MD, USA ; Frye, S. ; Cappelaere, P. ; Handy, M.
more authors

The Earth Observing One (EO-1) satellite was launched in November 2000 as a one year technology demonstration mission for a variety of space technologies. After the first year, it was used as a pathfinder for the creation of SensorWebs. A SensorWeb is the integration of a variety of space, airborne and ground sensors into a loosely coupled collaborative sensor system that automatically provides useful data products. Typically, a SensorWeb is comprised of heterogeneous sensors tied together with an open messaging architecture and web services. SensorWebs provide easier access to sensor data, automated data product production and rapid data product delivery. Disasters are the perfect arena to test SensorWeb functionality since emergency workers and managers need easy and rapid access to satellite, airborne and in-situ sensor data as decision support tools. The Namibia Early Flood Warning SensorWeb pilot project was established to experiment with various aspects of sensor interoperability and SensorWeb functionality. The SensorWeb system features EO-1 data along with other data sets from such satellites as Radarsat, Terra and Aqua. Finally, the SensorWeb team began to examine how to measure economic impact of SensorWeb technology infusion. This paper describes the architecture and software components that were developed along with performance improvements that were experienced. Also, problems and challenges that were encountered are described along with a vision for future enhancements to mitigate some of the problems.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:6 ,  Issue: 2 )

Date of Publication:

April 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.