By Topic

Quantized overcomplete expansions in IRN: analysis, synthesis, and algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Goyal, V.K. ; Dept. of Electr. Eng., California Univ., Berkeley, CA, USA ; Vetterli, M. ; Thao, N.T.

Coefficient quantization has peculiar qualitative effects on representations of vectors in IR with respect to overcomplete sets of vectors. These effects are investigated in two settings: frame expansions (representations obtained by forming inner products with each element of the set) and matching pursuit expansions (approximations obtained by greedily forming linear combinations). In both cases, based on the concept of consistency, it is shown that traditional linear reconstruction methods are suboptimal, and better consistent reconstruction algorithms are given. The proposed consistent reconstruction algorithms were in each case implemented, and experimental results are included. For frame expansions, results are proven to bound distortion as a function of frame redundancy r and quantization step size for linear, consistent, and optimal reconstruction methods. Taken together, these suggest that optimal reconstruction methods will yield O(1/r2) mean-squared error (MSE), and that consistency is sufficient to insure this asymptotic behavior. A result on the asymptotic tightness of random frames is also proven. Applicability of quantized matching pursuit to lossy vector compression is explored. Experiments demonstrate the likelihood that a linear reconstruction is inconsistent, the MSE reduction obtained with a nonlinear (consistent) reconstruction algorithm, and generally competitive performance at low bit rates

Published in:

Information Theory, IEEE Transactions on  (Volume:44 ,  Issue: 1 )