By Topic

A Lipschitz Regularity-Based Statistical Model With Applications in Coordinate Metrology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Heeyoung Kim ; AT&T Labs., Florham Park, NJ, USA ; Xiaoming Huo ; Shilling, M. ; Tran, H.D.

In dimensional inspection using coordinate measuring machines (CMMs), the following issues are critical to achieve accurate inspection while minimizing the cost and time: 1) How can we select the sampling positions of the measurements so that we can get as much information from a limited number of samples as possible and 2) given the limited number of measurements, how can we assess the form error so that one can reliably decide whether the product is acceptable? To address these problems, we propose a wavelet-based model that takes advantage of the fact that the Lipschitz regularity holds for the CMM data. Under the framework of the proposed model, we derive the optimal sampling positions and propose a systematic procedure to estimate the form error given the limited number of sampled points. The proposed method is validated using both synthetic and real CMM data sets for straightness measurements. The comparison with other existing methods demonstrates the effectiveness of our method.

Published in:

Automation Science and Engineering, IEEE Transactions on  (Volume:11 ,  Issue: 2 )