By Topic

Intensity-Based Ultrasound Visual Servoing: Modeling and Validation With 2-D and 3-D Probes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Caroline Nadeau ; CEA List, Saclay, France ; Alexandre Krupa

In this paper, we present an ultrasound (US) visual servoing to control a robotic system equipped with a US probe. To avoid the difficult and time-consuming image segmentation process, we develop a new approach taking as visual input directly the intensity of the image pixels. The analytic form of the interaction matrix that relates the variation of the intensity features to the motion of the probe is established and used to control the six degrees of freedom (dof) of the robotic system. Our approach is applied with a 2-D and a 3-D US probe, and the results that are obtained with both sensors are compared in simulation. The 2-D probe shows good performances for tracking tasks and the 3-D one, which ensures a larger domain of convergence, is more particularly used for positioning tasks. The intensity-based approach is validated through experimental results performed with a realistic abdominal phantom and with animal soft tissue.

Published in:

IEEE Transactions on Robotics  (Volume:29 ,  Issue: 4 )