By Topic

Creating connected representations of cortical gray matter for functional MRI visualization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Teo, P.C. ; Dept. of Comput. Sci., Stanford Univ., CA, USA ; Sapiro, G. ; Wandell, B.A.

Describes a system that is being used to segment gray matter from magnetic resonance imaging (MRI) and to create connected cortical representations for functional MRI visualization (fMRI). The method exploits knowledge of the anatomy of the cortex and incorporates structural constraints into the segmentation. First, the white matter and cerebral spinal fluid (CSF) regions in the MR volume are segmented using a novel techniques of posterior anisotropic diffusion. Then, the user selects the cortical white matter component of interest, and its structure is verified by checking for cavities and handles. After this, a connected representation of the gray matter is created by a constrained growing-out from the white matter boundary. Because the connectivity is computed, the segmentation can be used as input to several methods of visualizing the spatial pattern of cortical activity within gray matter. In the authors' case, the connected representation of gray matter is used to create a flattened representation of the cortex. Then, fMRI measurements are overlaid on the flattened representation, yielding a representation of the volumetric data within a single image. The software is freely available to the research community.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:16 ,  Issue: 6 )