By Topic

Wavelet shrinkage and generalized cross validation for image denoising

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Weyrich, N. ; DSP Tools Group, Synopsys GmbH, Herzogenrath, Germany ; Warhola, G.T.

We present a denoising method based on wavelets and generalized cross validation and apply these methods to image denoising. We describe the method of modified wavelet reconstruction and show that the related shrinkage parameter vector can be chosen without prior knowledge of the noise variance by using the method of generalized cross validation. By doing so, we obtain an estimate of the shrinkage parameter vector and, hence, the image, which is very close to the best achievable mean-squared error result-that given by complete knowledge of the underlying clean image

Published in:

Image Processing, IEEE Transactions on  (Volume:7 ,  Issue: 1 )