By Topic

An unsupervised texture segmentation algorithm with feature space reduction and knowledge feedback

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pichler, O. ; Dept. of Electr. Eng., Duisburg Univ., Germany ; Teuner, A. ; Hosticka, Bedrich J.

This paper presents an unsupervised texture segmentation algorithm based on feature extraction using multichannel Gabor filtering. It is shown that feature contrast, a criterion derived for Gabor filter parameter selection, is well suited for feature coordinate weighting in order to reduce the feature space dimension. The central idea of the proposed segmentation algorithm is to decompose the actual segmented image into disjunct areas called scrap images and use them after lowpass filtering as additional features for repeated k-means clustering and minimum distance classification. This yields a classification of texture regions with an improved degree of homogeneity while preserving precise texture boundaries

Published in:

Image Processing, IEEE Transactions on  (Volume:7 ,  Issue: 1 )