By Topic

3-D Kalman filter for image motion estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jaemin Kim ; Dept. of Electron. Eng., Kangwon Nat. Univ., Chunchon, South Korea ; Woods, J.W.

This paper presents a new three-dimensional (3-D) Markov model for motion vector fields. The three dimensions consist of the two space dimensions plus a scale dimension. We use a compound signal model to handle motion discontinuity in this 3-D Markov random field (MRF). For motion estimation, we use an extended Kalman filter as a pel-recursive estimator. Since a single observation can be sensitive to local image characteristics, especially when the model is not accurate, we employ windowed multiple observations at each pixel to increase accuracy. These multiple observations employ different weighting values for each observation, since the uncertainty in each observation is different. Finally, we compare this 3-D model with earlier proposed one-dimensional (1-D) (coarse-to-fine scale) and two-dimensional (2D) spatial compound models, in terms of motion estimation performance on a synthetic and a real image sequence

Published in:

Image Processing, IEEE Transactions on  (Volume:7 ,  Issue: 1 )