By Topic

Classification of Time Series of Multispectral Images With Limited Training Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Demir, B. ; Dept. of Inf. Eng. & Comput. Sci., Univ. of Trento, Trento, Italy ; Bovolo, F. ; Bruzzone, L.

Image classification usually requires the availability of reliable reference data collected for the considered image to train supervised classifiers. Unfortunately when time series of images are considered, this is seldom possible because of the costs associated with reference data collection. In most of the applications it is realistic to have reference data available for one or few images of a time series acquired on the area of interest. In this paper, we present a novel system for automatically classifying image time series that takes advantage of image(s) with an associated reference information (i.e., the source domain) to classify image(s) for which reference information is not available (i.e., the target domain). The proposed system exploits the already available knowledge on the source domain and, when possible, integrates it with a minimum amount of new labeled data for the target domain. In addition, it is able to handle possible significant differences between statistical distributions of the source and target domains. Here, the method is presented in the context of classification of remote sensing image time series, where ground reference data collection is a highly critical and demanding task. Experimental results show the effectiveness of the proposed technique. The method can work on multimodal (e.g., multispectral) images.

Published in:

Image Processing, IEEE Transactions on  (Volume:22 ,  Issue: 8 )