By Topic

Regularized Feature Reconstruction for Spatio-Temporal Saliency Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhixiang Ren ; Centre for Multimedia and Network Technology, School of Computer Engineering, Nanyang Technological University, Singapore ; Shenghua Gao ; Liang-Tien Chia ; Deepu Rajan

Multimedia applications such as image or video retrieval, copy detection, and so forth can benefit from saliency detection, which is essentially a method to identify areas in images and videos that capture the attention of the human visual system. In this paper, we propose a new spatio-temporal saliency detection framework on the basis of regularized feature reconstruction. Specifically, for video saliency detection, both the temporal and spatial saliency detection are considered. For temporal saliency, we model the movement of the target patch as a reconstruction process using the patches in neighboring frames. A Laplacian smoothing term is introduced to model the coherent motion trajectories. With psychological findings that abrupt stimulus could cause a rapid and involuntary deployment of attention, our temporal model combines the reconstruction error, regularizer, and local trajectory contrast to measure the temporal saliency. For spatial saliency, a similar sparse reconstruction process is adopted to capture the regions with high center-surround contrast. Finally, the temporal saliency and spatial saliency are combined together to favor salient regions with high confidence for video saliency detection. We also apply the spatial saliency part of the spatio-temporal model to image saliency detection. Experimental results on a human fixation video dataset and an image saliency detection dataset show that our method achieves the best performance over several state-of-the-art approaches.

Published in:

IEEE Transactions on Image Processing  (Volume:22 ,  Issue: 8 )