By Topic

Energy Conversion Efficiency of Electromagnetic Launcher With Capacitor-Based Pulsed Power System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Peizhu Liu ; Department of Electrical Engineering, State Key Lab of Power System, Tsinghua University, Beijing, China ; Xinjie Yu ; Jun Li ; Shizhong Li

The stored-to-kinetic energy conversion efficiency of railgun system is investigated by simulation and experiment methods. There are many factors, which might affect the conversion efficiency of the railgun system. These factors include the parameter values of pulsed power supply (PPS), the velocity of armature, the inductance gradient of rail, and so on. To analyze the stored-to-kinetic energy conversion efficiency, a novel electric circuit simulation model for the railgun system is built. The simulation results show that the less resistance, the more inductance of PPS, the more inductance gradient of launcher, and the higher muzzle velocity of armature can improve the energy conversion efficiency of the railgun system. Some experimental results with the 6-MJ railgun system at Beijing Institute of Special Electromechanical Technology are also presented in this paper, which can illustrate the correctness of the analysis and the simulation results.

Published in:

IEEE Transactions on Plasma Science  (Volume:41 ,  Issue: 5 )