By Topic

Gaussian Blurring-Invariant Comparison of Signals and Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhengwu Zhang ; Dept. of Stat., Florida State Univ., Tallahassee, FL, USA ; Klassen, E. ; Srivastava, A.

We present a Riemannian framework for analyzing signals and images in a manner that is invariant to their level of blurriness, under Gaussian blurring. Using a well known relation between Gaussian blurring and the heat equation, we establish an action of the blurring group on image space and define an orthogonal section of this action to represent and compare images at the same blur level. This comparison is based on geodesic distances on the section manifold which, in turn, are computed using a path-straightening algorithm. The actual implementations use coefficients of images under a truncated orthonormal basis and the blurring action corresponds to exponential decays of these coefficients. We demonstrate this framework using a number of experimental results, involving 1D signals and 2D images. As a specific application, we study the effect of blurring on the recognition performance when 2D facial images are used for recognizing people.

Published in:

Image Processing, IEEE Transactions on  (Volume:22 ,  Issue: 8 )