By Topic

Frequency response analysis and short-circuit impedance measurement in detection of winding deformation within power transformers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bagheri, M. ; Sch. of Electr. Eng. & Telecommun., Univ. of New South Wales, Sydney, NSW, Australia ; Naderi, M.S. ; Blackburn, T. ; Phung, T.

Power transformers are in service under different environmental, electrical, and mechanical conditions [1] and may be subject to enormous hazards during the course of operation [2], [3]. They are commonly considered to be the heart of the transmission and distribution sectors of electric power systems; monitoring their condition and diagnosing faults are important parts of the maintenance function [4]. Utility engineers strive to keep power transformers in service and to prevent even shortterm outages. Failure of a transformer can cause extensive damage to equipment owned by consumers or the utility [5].

Published in:

Electrical Insulation Magazine, IEEE  (Volume:29 ,  Issue: 3 )