By Topic

Point-mass filter and Cramer-Rao bound for terrain-aided navigation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bergman, N. ; Dept. of Electr. Eng., Linkoping Univ. ; Ljung, L.

The nonlinear estimation problem in navigation using terrain height variations is studied. The optimal Bayesian solution to the problem is derived. The implementation is grid based, calculating the probability of a set of points on an adaptively dense mesh. The Cramer-Rao bound is derived. Monte Carlo simulations over a commercial map shows that the algorithm, after convergence, reaches the Cramer-Rao lower bound

Published in:

Decision and Control, 1997., Proceedings of the 36th IEEE Conference on  (Volume:1 )

Date of Conference:

10-12 Dec 1997