Cart (Loading....) | Create Account
Close category search window
 

Lattice Codes for the Gaussian Relay Channel: Decode-and-Forward and Compress-and-Forward

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yiwei Song ; Dept. of Electr. & Comput. Eng., Univ. of Illinois at Chicago, Chicago, IL, USA ; Devroye, N.

Lattice codes are known to achieve capacity in the Gaussian point-to-point channel, achieving the same rates as i.i.d. random Gaussian codebooks. Lattice codes are also known to outperform random codes for certain channel models that are able to exploit their linearity. In this paper, we show that lattice codes may be used to achieve the same performance as known i.i.d. Gaussian random coding techniques for the Gaussian relay channel, and show several examples of how this may be combined with the linearity of lattices codes in multisource relay networks. In particular, we present a nested lattice list decoding technique in which lattice codes are shown to achieve the decode-and-forward (DF) rate of single source, single destination Gaussian relay channels with one or more relays. We next present two examples of how this DF scheme may be combined with the linearity of lattice codes to achieve new rate regions which for some channel conditions outperform analogous known Gaussian random coding techniques in multisource relay channels. That is, we derive a new achievable rate region for the two-way relay channel with direct links and compare it to existing schemes, and derive a new achievable rate region for the multiple access relay channel. We furthermore present a lattice compress-and-forward (CF) scheme for the Gaussian relay channel which exploits a lattice Wyner-Ziv binning scheme and achieves the same rate as the Cover-El Gamal CF rate evaluated for Gaussian random codes. These results suggest that structured/lattice codes may be used to mimic, and sometimes outperform, random Gaussian codes in general Gaussian networks.

Published in:

Information Theory, IEEE Transactions on  (Volume:59 ,  Issue: 8 )

Date of Publication:

Aug. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.