By Topic

A Performance Modeling and Optimization Analysis Tool for Sparse Matrix-Vector Multiplication on GPUs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ping Guo ; Dept. of Comput. Sci., Univ. of Wyoming, Laramie, WY, USA ; Liqiang Wang ; Po Chen

This paper presents a performance modeling and optimization analysis tool to predict and optimize the performance of sparse matrix-vector multiplication (SpMV) on GPUs. We make the following contributions: 1) We present an integrated analytical and profile-based performance modeling to accurately predict the kernel execution times of CSR, ELL, COO, and HYB SpMV kernels. Our proposed approach is general, and neither limited by GPU programming languages nor restricted to specific GPU architectures. In this paper, we use CUDA-based SpMV kernels and NVIDIA Tesla C2050 for our performance modeling and experiments. According to our experiments, for 77 out of 82 test cases, the performance differences between the predicted and measured execution times are less than 9 percent; for the rest five test cases, the differences are between 9 and 10 percent. For CSR, ELL, COO, and HYB SpMV CUDA kernels, the average differences are 6.3, 4.4, 2.2, and 4.7 percent, respectively. 2) Based on the performance modeling, we design a dynamic-programming based SpMV optimal solution auto-selection algorithm to automatically report an optimal solution (i.e., optimal storage strategy, storage format(s), and execution time) for a target sparse matrix. In our experiments, the average performance improvements of the optimal solutions are 41.1, 49.8, and 37.9 percent, compared to NVIDIA's CSR, COO, and HYB CUDA kernels, respectively.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:25 ,  Issue: 5 )