Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

On Scalability, Generalization, and Hybridization of Coevolutionary Learning: A Case Study for Othello

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Szubert, M. ; Inst. of Comput. Sci., Poznan Univ. of Technol., Poznań, Poland ; Jaskowski, W. ; Krawiec, K.

This study investigates different methods of learning to play the game of Othello. The main questions posed concern scalability of algorithms with respect to the search space size and their capability to generalize and produce players that fare well against various opponents. The considered algorithms represent strategies as n-tuple networks, and employ self-play temporal difference learning (TDL), evolutionary learning (EL) and coevolutionary learning (CEL), and hybrids thereof. To assess the performance, three different measures are used: score against an a priori given opponent (a fixed heuristic strategy), against opponents trained by other methods (round-robin tournament), and against the top-ranked players from the online Othello League. We demonstrate that although evolutionary-based methods yield players that fare best against a fixed heuristic player, it is the coevolutionary temporal difference learning (CTDL), a hybrid of coevolution and TDL, that generalizes better and proves superior when confronted with a pool of previously unseen opponents. Moreover, CTDL scales well with the size of representation, attaining better results for larger n-tuple networks. By showing that a strategy learned in this way wins against the top entries from the Othello League, we conclude that it is one of the best 1-ply Othello players obtained to date without explicit use of human knowledge.

Published in:

Computational Intelligence and AI in Games, IEEE Transactions on  (Volume:5 ,  Issue: 3 )