By Topic

Rehabilitation Exoskeleton Design: Exploring the Effect of the Anterior Lunge Degree of Freedom

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Paul Stegall ; Department of Mechanical Engineering , Columbia University, New York, NY, USA ; Kyle Winfree ; Damiano Zanotto ; Sunil Kumar Agrawal

As our robotics community advances its understanding toward the optimal design of robotic exoskeletons for human gait training, the question we ask in this paper is how the anterior lunge degree of freedom in the robotic exoskeleton affects human gait training. Answering this question requires both novel robotic design and novel protocols for human gait training to characterize this effect. To the best of the authors' knowledge, this is the first study to characterize the effect of an exoskeleton's degrees of freedom on human gait adaptation. We explored this question using the Active Leg EXoskeleton (ALEX) II. The study presented was performed using ALEX II under the following two configurations: 1) locking the anterior/posterior translation in the exoskeleton, while allowing other degrees-of-freedom (labeled as locked mode) and 2) keeping the anterior/posterior degree of freedom unlocked (labeled as unlocked mode). Healthy subjects walked at self-selected speeds on a treadmill and were trained to walk with a new gait template, scaled down from their normal template. While both groups showed adaptation and retention over a 26-min period following training, the unlocked group showed better performance in terms of adaptation and retention compared with the locked group.

Published in:

IEEE Transactions on Robotics  (Volume:29 ,  Issue: 4 )