By Topic

Board-Level Functional Fault Diagnosis Using Artificial Neural Networks, Support-Vector Machines, and Weighted-Majority Voting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fangming Ye ; Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA ; Zhaobo Zhang ; Krishnendu Chakrabarty ; Xinli Gu

Increasing integration densities and high operating speeds lead to subtle manifestation of defects at the board level. Functional fault diagnosis is, therefore, necessary for board-level product qualification. However, ambiguous diagnosis results lead to long debug times and even wrong repair actions, which significantly increase repair cost and adversely impact yield. Advanced machine-learning (ML) techniques offer an unprecedented opportunity to increase the accuracy of board-level functional diagnosis and reduce high-volume manufacturing cost through successful repair. We propose a smart diagnosis method based on two ML classification models, namely, artificial neural networks (ANNs) and support-vector machines (SVMs) that can learn from repair history and accurately localize the root cause of a failure. Fine-grained fault syndromes extracted from failure logs and corresponding repair actions are used to train the classification models. We also propose a decision machine based on weighted-majority voting, which combines the benefits of ANNs and SVMs. Three complex boards from the industry, currently in volume production, and additional synthetic data, are used to validate the proposed methods in terms of diagnostic accuracy, resolution, and quantifiable improvement over current diagnostic software.

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:32 ,  Issue: 5 )