Cart (Loading....) | Create Account
Close category search window

Optimal Beamforming Schemes and its Capacity Behavior for Downlink Distributed Antenna Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
4 Author(s)
Sang-Rim Lee ; Sch. of Electr. Eng., Korea Univ., Seoul, South Korea ; Sung-Hyun Moon ; Han-Bae Kong ; Inkyu Lee

In this paper, we investigate the outage and ergodic capacity of downlink distributed antenna systems (DAS) where each distributed antenna unit (DAU) has multiple antennas with per-DAU power constraint. We first derive the optimal beamforming vector in a closed form by applying a matrix minor condition to relax the positive semi-definite constraint. We observe that our derived solution has a form of maximum ratio transmission per each DAU with full power. Based on the derived optimal beamforming, the outage and ergodic capacity under Rayleigh fading channels are analyzed. To this end, we show that a distribution of the received signal-to-noise ratio is characterized as a Gamma distribution by approximating a sum of non-identical independent Nakagami-m random variables as a single Nakagami-m random variable based on the moment matching method. Then, we present an accurate formula of the outage and ergodic capacity in a closed form which matches well with the simulation results. Furthermore, we derive an upper bound of an achievable average rate of DAS with limited feedback. We then propose a new feedback bit allocation algorithm to maximize the derived metric. Simulation results confirm the accuracy of the derived outage and ergodic capacity expressions and the efficiency of the proposed bit allocation method.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:12 ,  Issue: 6 )

Date of Publication:

June 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.