By Topic

Trajectory Improves Data Delivery in Urban Vehicular Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yanmin Zhu ; Dept. of Comput. Sci. & Eng., Shanghai Jiao Tong Univ., Shanghai, China ; Yuchen Wu ; Bo Li

Efficient data delivery is of great importance, but highly challenging for vehicular networks because of frequent network disruption, fast topological change and mobility uncertainty. The vehicular trajectory knowledge plays a key role in data delivery. Existing algorithms have largely made predictions on the trajectory with coarse-grained patterns such as spatial distribution or/and the inter-meeting time distribution, which has led to poor data delivery performance. In this paper, we mine the extensive data sets of vehicular traces from two large cities in China, i.e., Shanghai and Shenzhen, through conditional entropy analysis, we find that there exists strong spatiotemporal regularity with vehicle mobility. By extracting mobility patterns from historical vehicular traces, we develop accurate trajectory predictions by using multiple order Markov chains. Based on an analytical model, we theoretically derive packet delivery probability with predicted trajectories. We then propose routing algorithms taking full advantage of predicted probabilistic vehicular trajectories. Finally, we carry out extensive simulations based on three large data sets of real GPS vehicular traces, i.e., Shanghai taxi data set, Shanghai bus data set and Shenzhen taxi data set. The conclusive results demonstrate that our proposed routing algorithms can achieve significantly higher delivery ratio at lower cost when compared with existing algorithms.

description of the attached tpds-gagraphic-118.gif linked by @xlink:href description of the attached tpds-gagraphic-118.gif linked by @xlink:href

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:25 ,  Issue: 4 )