By Topic

An integrated health management process for automotive cyber-physical systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sankavaram, C. ; Electr. & Comput. Eng. Dept., Univ. of Connecticut, Storrs, CT, USA ; Kodali, A. ; Pattipati, K.

Automobile is one of the most widely distributed cyber-physical systems. Over the last few years, the electronic explosion in automotive vehicles has significantly increased the complexity, heterogeneity and interconnectedness of embedded systems. Although designed to sustain long life, systems degrade in performance due to gradual development of anomalies eventually leading to faults. In addition, system usage and operating conditions (e.g., weather, road surfaces, and environment) may lead to different failure modes that can affect the performance of vehicles. Advanced diagnosis and prognosis technologies are needed to quickly detect and isolate faults in network-embedded automotive systems so that proactive corrective maintenance actions can be taken to avoid failures and improve vehicle availability. This paper discusses an integrated diagnostic and prognostic framework, and applies it to two automotive systems, viz., a Regenerative Braking System (RBS) in hybrid electric vehicles and an Electric Power Generation and Storage (EPGS) system.

Published in:

Computing, Networking and Communications (ICNC), 2013 International Conference on

Date of Conference:

28-31 Jan. 2013