Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Multiobjective optimization and multiple constraint handling with evolutionary algorithms. II. Application example

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fonseca, C.M. ; Dept. of Autom. Control & Syst. Eng., Sheffield Univ., UK ; Fleming, P.J.

For part I see ibid., 26-37. The evolutionary approach to multiple function optimization formulated in the first part of the paper is applied to the optimization of the low-pressure spool speed governor of a Pegasus gas turbine engine. This study illustrates how a technique such as the multiobjective genetic algorithm can be applied, and exemplifies how design requirements can be refined as the algorithm runs. Several objective functions and associated goals express design concerns in direct form, i.e., as the designer would state them. While such a designer-oriented formulation is very attractive, its practical usefulness depends heavily on the ability to search and optimize cost surfaces in a class much broader than usual, as already provided to a large extent by the genetic algorithm (GA). The two instances of the problem studied demonstrate the need for preference articulation in cases where many and highly competing objectives lead to a nondominated set too large for a finite population to sample effectively. It is shown that only a very small portion of the nondominated set is of practical relevance, which further substantiates the need to supply preference information to the GA. The paper concludes with a discussion of the results

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:28 ,  Issue: 1 )