Cart (Loading....) | Create Account
Close category search window
 

A multisegment computer simulation of normal human gait

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gilchrist, L.A. ; Buffalo Univ., NY, USA ; Winter, David A.

The goal of this project was to develop a computer simulation of normal human walking that would use as driving moments resultant joint moments from a gait analysis. The system description, initial conditions and driving moments were taken from an inverse dynamics analysis of a normal walking trial. A nine-segment three-dimensional (3-D) model, including a two-part foot, was used. Torsional, linear springs and dampers were used at the hip joints to keep the trunk vertical and at the knee and ankle joints to prevent nonphysiological motion. Dampers at other joints were required to ensure a smooth and realistic motion. The simulated human successfully completed one step (550 ms), including both single and double support phases. The model proved to be sensitive to changes in the spring stiffness values of the trunk controllers. Similar sensitivity was found with the springs used to prevent hyperextension of the knee at heel contact and of the metatarsal-phalangeal joint at pushoff. In general, there was much less sensitivity to the damping coefficients. This simulation improves on previous efforts because it incorporates some features necessary in simulations designed to answer clinical science questions. Other control algorithms are required, however, to ensure that the model can be realistically adapted to different subjects

Published in:

Rehabilitation Engineering, IEEE Transactions on  (Volume:5 ,  Issue: 4 )

Date of Publication:

Dec 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.