By Topic

Urban Density Estimation From Polarimetric SAR Images Based on a POA Correction Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Muneyoshi Kajimoto ; Department of Civil and Earth Resources Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan ; Junichi Susaki

In this paper, an algorithm for estimating urban density from polarimetric synthetic aperture radar (SAR) images is proposed. Polarization orientation angle (POA) and four power components derived by four-component decomposition are used in the algorithm. In particular, in urban areas, SAR data are generally affected by factors such as the interval between buildings, building height, and building azimuth angle. Here, building azimuth (orientation) angle means the relative azimuth between the wall normal and the radar's ground range direction. The interval between buildings and building height are used for building density calculation such as the building-to-land ratio and the floor area ratio. However, building azimuth angle which depends on satellite orbit has almost no relation with building density. The scattering intensity of microwaves emitted from SAR has a strong dependence on this building azimuth angle. Therefore, the main part of this paper is focused on the correction of this angular effect. The first step in the POA correction method is the extraction of homogeneous-POA city districts. In the second step, each power component's scattering intensity is normalized for all pixels in a particular POA interval separately for different POA types of districts. In the case of Tokyo metropolitan area, Japan, estimated urban density from ALOS/PALSAR data has correlation coefficients of nearly 0.7 with the building-to-land ratio and 0.5 with the floor area ratio on the scale of hundreds of meter. In the areas where strong POA dependence is seen, the improvement of the correlation coefficient runs up to approximately 0.2.

Published in:

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing  (Volume:6 ,  Issue: 3 )