Cart (Loading....) | Create Account
Close category search window

Improving Breakdown Voltage of LDMOS Using a Novel Cost Effective Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ming-Hung Han ; Dept. of Electron. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Hung-Bin Chen ; Chia-Jung Chang ; Chi-Chong Tsai
more authors

A reduced surface field (RESURF) laterally diffused metal oxide semiconductor (LDMOS) device with the concept of charge compensation using p-implant layer (PIL) without additional process step is proposed in standard 0.18-μm technology. By simply using the p-type drift drain (PDD) implantation of p-type LDMOS into n-type LDMOS, breakdown voltage (VBD) is substantially improved. For a thorough study of device phenomena, hydrodynamic transport simulations are first performed to analyze the electric field distributions at high voltage bias in order to explain increases in breakdown voltage and predict its optimal design parameter. Then fabrication of the devices is performed and shows that the breakdown voltages increase significantly. The measurement results show a 12% improvement in VBD and a 5% improvement in figure of merit (FOM). Throughout the fabrication process, the enlarged breakdown voltage obtained by the PIL without additional process and device area show the potential of cost effective. Because such devices have good off-state breakdown voltage and specific on-resistance, they are very competitive with similar technologies and promising system-on-chip (SOC) applications.

Published in:

Semiconductor Manufacturing, IEEE Transactions on  (Volume:26 ,  Issue: 2 )

Date of Publication:

May 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.