By Topic

A Discontinuous Galerkin Surface Integral Equation Method for Electromagnetic Wave Scattering From Nonpenetrable Targets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhen Peng ; ElectroScience Lab., Ohio State Univ., Columbus, OH, USA ; Kheng-Hwee Lim ; Jin-Fa Lee

We present a discontinuous Galerkin surface integral equation method, herein referred to as IEDG, for time harmonic electromagnetic wave scattering from nonpenetrable targets. The proposed IEDG algorithm allows the implementation of the combined field integral equation (CFIE) using square-integrable, , trial and test functions without any considerations of continuity requirements across element boundaries. Due to the local characteristics of basis functions, it is possible to employ nonconformal surface discretizations of the targets. Furthermore, it enables the possibility to mix different types of elements and employ different order of basis functions within the same discretization. Therefore, the proposed IEDG method is highly flexible to apply adaptation techniques. Numerical results are included to validate the accuracy and demonstrate the versatility of the proposed IEDG method. In addition, a complex large-scale simulation is conducted to illustrate the potential benefits offered by the proposed method for modeling multiscale electrically large targets.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:61 ,  Issue: 7 )