By Topic

Learning to Reproduce Fluctuating Time Series by Inferring Their Time-Dependent Stochastic Properties: Application in Robot Learning Via Tutoring

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Murata, S. ; Dept. of Modern Mech. Eng., Waseda Univ., Tokyo, Japan ; Namikawa, J. ; Arie, H. ; Sugano, S.
more authors

This study proposes a novel type of dynamic neural network model that can learn to extract stochastic or fluctuating structures hidden in time series data. The network learns to predict not only the mean of the next input state, but also its time-dependent variance. The training method is based on maximum likelihood estimation by using the gradient descent method and the likelihood function is expressed as a function of the estimated variance. Regarding the model evaluation, we present numerical experiments in which training data were generated in different ways utilizing Gaussian noise. Our analysis showed that the network can predict the time-dependent variance and the mean and it can also reproduce the target stochastic sequence data by utilizing the estimated variance. Furthermore, it was shown that a humanoid robot using the proposed network can learn to reproduce latent stochastic structures hidden in fluctuating tutoring trajectories. This learning scheme is essential for the acquisition of sensory-guided skilled behavior.

Published in:

Autonomous Mental Development, IEEE Transactions on  (Volume:5 ,  Issue: 4 )