Cart (Loading....) | Create Account
Close category search window
 

Long-Term Repetition Frequency Stabilization of Passively Mode-Locked Fiber Lasers Using High-Frequency Harmonic Synchronization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bo Ning ; Dept. of Electron., Peking Univ., Beijing, China ; Dong Hou ; Peng Du ; Jianye Zhao

Long-term repetition frequency stabilization of passively mode-locked (ML) fiber lasers using high-frequency harmonic synchronization is investigated. First, the standard cavity length controlling-based stabilization scheme is studied mathematically, and its disadvantages in high-frequency harmonic synchronization are analyzed. Theoretical studies are then carried out to prove that by modulating the pump power of lasers, the disadvantages can be overcome, and high-stability stabilization with low noises can thus be achieved. Based on the studies, an improved frequency stabilization scheme for passively ML fiber lasers is proposed. Its performances are evaluated by synchronizing a high-frequency harmonic of an ML laser with a 3.035-GHz reference microwave signal. Results show that the residual phase noise for the stabilization (synchronization) reaches around -100 dBc/Hz (-120 dBc/Hz) at 3-Hz (10 KHz) offset frequency, which results in 14.9 fs (21.2 fs) timing jitter integrated from 1 Hz to 0.1 MHz (1 MHz). The long-term (2 h) phase drift is less than 12 fs for in-loop measurement. For out-of-loop measurement, the drift is ~74 fs, while the measurement setup itself brings a drift of ~55 fs. The research provides deep studies for frequency stabilization of passively ML fiber lasers and can benefit their applications in various areas.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:49 ,  Issue: 6 )

Date of Publication:

June 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.