Cart (Loading....) | Create Account
Close category search window
 

Optimisation of power allocation for asymmetric relay placement in multi-hop relay systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dhaka, K. ; Dept. of Electr. Eng., Indian Inst. of Technol. Delhi, New Delhi, India ; Mallik, R.K. ; Schober, R.

In this study, schemes for optimisation of power allocation (OPA) for asymmetric relay placement are presented for multi-hop communication in a Rayleigh-fading environment. For a decode-and-forward (DF) multi-hop communication system, expressions are derived for optimised power allocation based on symbol error probability (SEP) and global channel state information (GCSI). The analysis for OPA based on GCSI is extended to a hybrid combination of amplify-and-forward (AF) and DF relays. Analysis is done for two kinds of modulation schemes: M-ary phase-shift keying with coherent detection and orthogonal M-ary frequency-shift keying with non-coherent detection. Simulation results show that for a multi-hop system with asymmetric relay placement, power optimisation schemes perform better than the conventional equal power allocation scheme. In addition, power optimisation based on GCSI shows substantially improved performance compared with power allocation based on end-to-end SEP. Further, performance comparison is shown for increase in number of relay nodes in an AF and DF multi-hop system with and without power allocation. The performance of a DF system improves with increase in number of relay nodes whereas performance of an AF system degrades. Hybrid relaying provides an option to exercise switching between DF and AF so as to extract the maximum advantage of the two relaying schemes.

Published in:

Communications, IET  (Volume:7 ,  Issue: 2 )

Date of Publication:

January 22 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.