Cart (Loading....) | Create Account
Close category search window
 

Characterization of the Nonlinear Thermal Resistance and Pulsed Thermal Dynamic Behavior of AlGaN–GaN HEMTs on SiC

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Florian, C. ; Dept. of Electr., Electron. & Inf. Eng. (DEI), Univ. of Bologna, Bologna, Italy ; Santarelli, A. ; Cignani, R. ; Filicori, F.

A laboratory setup, along with a set of measurement and identification procedures, have been developed expressly for the characterization of the thermal behavior of AlGaN/GaN HEMTs, suitable for microwave high power amplifier (HPA) design. The setup allows the measurement of the drain current time-domain dynamic response to positive drain bias pulses, performed at different temperatures and different dissipated power densities. The proposed measurement conditions discriminate thermal phenomena from electrical dispersive effects for this particular technology. Both the thermal resistance and the “transient thermal resistance” are identified for a single-cell 1-mm device and for a 4-mm power-bar composed of four devices, designed to be used as the final stage of a monolithic C -band HPA for pulsed radar application. Transient data allow to compute the device operative channel temperature as a function of the pulsewidth and duty cycle, which is a crucial feature for pulsed HPA applications, typical for the GaN technology. The measured thermal data point out the nonlinearity of the thermal resistance versus dissipated power and base-plate temperature and the consequent critical thermal issue inherent in physically packing together such devices.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:61 ,  Issue: 5 )

Date of Publication:

May 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.