By Topic

A Compressed Sensing Analog-to-Information Converter With Edge-Triggered SAR ADC Core

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Trakimas, M. ; Lincoln Lab., Tufts Univ., Medford, MA, USA ; D'Angelo, R. ; Aeron, S. ; Hancock, T.
more authors

This paper presents the design and implementation of an analog-to-information converter (AIC) capable of Nyquist and compressed sensing modes of operation. The core of the AIC is a 10-bit edge-triggered charge-sharing SAR ADC with a figure of merit (FOM) of 55 fJ/conversion-step and Nyquist-sampling rate of 9.5 Msample/s. The integration of a pseudorandom clock generator enables compressed sensing operation via random sampling and subsequent asynchronous successive approximation conversion by the core ADC. The AIC allows complete reconstruction of a spectrum consisting of sparse single tones or sparse frequency bands using compressed sensing algorithms based on ℓ1-minimization as well as ℓ1,2 regularization, which exploits group sparsity. Implemented in 90 nm CMOS, the prototype SAR ADC core achieves a maximum sample rate of 9.5 MS/s, an ENOB of 9.3 bits, and consumes 550 μW from a 1.2 V supply. Measurement results of the AIC demonstrate an effective bandwidth of 25 MHz, which is 5 × greater than Nyquist-sampling rate with an improved effective FOM of 12.2 fJ/conversion-step for signals with sparse frequency support.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:60 ,  Issue: 5 )