By Topic

A Novel Layer Jamming Mechanism With Tunable Stiffness Capability for Minimally Invasive Surgery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yong-Jae Kim ; Samsung Advanced Institute of Technology, Yongin si, Republic of Korea ; Shanbao Cheng ; Sangbae Kim ; Karl Iagnemma

This paper presents a novel “layer jamming” mechanism that can achieve variable stiffness. The layer jamming mechanism exploits the friction present between layers of thin material, which can be controlled by a confining pressure. Due to the mechanism's hollow geometry, compact size, and light weight, it is well suited for various minimally invasive surgery applications, where stiffness change is required. This paper describes the concept, the mathematical model, and a tubular snake-like manipulator prototype. Various characteristics of layer jamming, such as stiffness and yield strength, are studied both theoretically and experimentally.

Published in:

IEEE Transactions on Robotics  (Volume:29 ,  Issue: 4 )