By Topic

Environment prediction for a mobile robot in a dynamic environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
C. C. Chang ; Dept. of Control Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Kai-Tai Song

The problem of navigating a mobile robot among moving obstacles is usually solved on the condition of knowing the velocity of obstacles. However, it is difficult to provide such information to a robot in real time. In this paper, we present an environment predictor that provides an estimate of future environment configuration by fusing multisensor data in real time. The predictor is implemented by an artificial neural network (ANN) trained using a relative-error-backpropagation (REBP) algorithm. The REBP algorithm enables the ANN to provide output data with a minimum relative error, which is better than conventional backpropagation (BP) algorithms in this prediction application. The mobile robot can, therefore, respond to anticipated changes in the environment. The performance is verified by prediction simulation and navigation experiments

Published in:

IEEE Transactions on Robotics and Automation  (Volume:13 ,  Issue: 6 )