By Topic

An integral manifold approach for tip-position tracking of flexible multi-link manipulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Moallem, M. ; Dept. of Electr. & Comput. Eng., Concordia Univ., Montreal, Que., Canada ; Khorasani, K. ; Patel, R.V.

In this paper, a nonlinear control strategy for tip position trajectory tracking of a class of structurally flexible multilink manipulators is developed. Using the concept of integral manifolds and singular perturbation theory, the full-order flexible system is decomposed into corrected slow and fast subsystems. The tip-position vector is similarly partitioned into corrected slow and fast outputs. To ensure an asymptotic tracking capability, the corrected slow subsystem is augmented by a dynamical controller in such a way that the resulting closed-loop zero dynamics are linear and asymptotically stable. The tracking problem is then redefined as tracking the slow output and stabilizing the corrected fast subsystem by using dynamic output feedback. Consequently, it is possible to show that the tip position tracking errors converge to a residual set of O(ε2), where ε is the singular perturbation parameter. A major advantage of the proposed strategy is that the only measurements required are the tip positions, joint positions, and joint velocities. Experimental results for a single-link arm are also presented and compared with the case when the slow control is designed based on the rigid-body model of the manipulator

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:13 ,  Issue: 6 )