By Topic

Hashed and hierarchical timing wheels: efficient data structures for implementing a timer facility

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Varghese, G. ; Dept. of Comput. Sci., Washington Univ., St. Louis, MO, USA ; Lauck, A.

The performance of timer algorithms is crucial to many network protocol implementations that use timers for failure recovery and rate control. Conventional algorithms to implement an operating system timer module take O(n) time to start or maintain a timer, where n is the number of outstanding timers: this is expensive for large n. This paper shows that by using a circular buffer or timing wheel, it takes O(1) time to start, stop, and maintain timers within the range of the wheel. Two extensions for larger values of the interval are described. In the first, the timer interval is hashed into a slot on the timing wheel. In the second, a hierarchy of timing wheels with different granularities is used to span a greater range of intervals. The performance of these two schemes and various implementation tradeoffs are discussed. We have used one of our schemes to replace the current BSD UNIX callout and timer facilities. Our new implementation can support thousands of outstanding timers without much overhead. Our timer schemes have also been implemented in other operating systems and network protocol packages

Published in:

Networking, IEEE/ACM Transactions on  (Volume:5 ,  Issue: 6 )