By Topic

Hybrid postprocessing etching for CMOS-compatible MEMS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Tea, Nim H. ; GE Medical Syst., Milwaukee, WI, USA ; Milanovic, V. ; Zincke, C.A. ; Suehle, J.S.
more authors

A major limitation in the fabrication of microstructures as a postCMOS (complimentary metal oxide semiconductor) process has been overcome by the development of a hybrid processing technique, which combines both an isotropic and anisotropic etch step. Using this hybrid technique, microelectromechanical structures with sizes ranging from 0.05 to ~1 mm in width and up to 6 mm in length were fabricated in CMOS technology. The mechanical robustness of the microstructures determines the limit on their dimensions. Examples of an application of this hybrid technique to produce microwave coplanar transmission lines are presented. The performance of the micromachined microwave coplanar waveguides meets the design specifications of low loss, high phase velocity, and 50 Ω characteristic impedance. Various commonly used etchants were investigated for topside maskless postmicromachining of ⟨100⟩ silicon wafers to obtain the microstructures. The isotropic etchant used is gas-phase xenon difluoride (XeF2), while the wet anisotropic etchants are either ethylenediamine-pyrocatechol (EDP) or tetramethylammonium hydroxide (TMAH). The advantages and disadvantages of these etchants with respect to selectivity, reproducibility, handling, and process compatibility are also described

Published in:

Microelectromechanical Systems, Journal of  (Volume:6 ,  Issue: 4 )