By Topic

δ-NARMA neural networks: a new approach to signal prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bonnet, D. ; SNCF Prospective Res. Dept., Paris, France ; Labouisse, V. ; Grumbach, A.

This paper presents a new connectionist architecture for stochastic univariate signal prediction. After a review of related statistical and connectionist models pointing out their advantages and limitations, we introduce the ε-NARMA model as the simplest nonlinear extension of ARMA models. These models then provide the units of a MLP-like neural network: the δ-NARMA neural network. The associated learning algorithm is based on an extension of classical backpropagation and on the concept of virtual error. Such networks can be seen as an extension of ARIMA and ARARMA models and face the problem of nonstationary signal prediction. A theoretical study brings understanding of experimental phenomena observed during the δ-NARMA learning process. The experiments carried out on three railroad-related real-life signals suggest that δ-NARMA networks outperform other studied univariate models

Published in:

Signal Processing, IEEE Transactions on  (Volume:45 ,  Issue: 11 )