By Topic

Solving inverse problems by Bayesian neural network iterative inversion with ground truth incorporation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
D. T. Davis ; Inf. Process. Lab., Washington Univ., Seattle, WA, USA ; Jenq-Neng Hwang

Neural networks have long been applied to inverse parameter retrieval problems. The literature documents a development from the use of neural networks as explicit inverses to neural network iterative inversion (NNII) and, finally, to Bayesian neural network iterative inversion (BNNII), which adds a Bayesian superstructure to NNII. Inverse problems have been often considered ill posed, i.e. the statement of the problem does not thoroughly constrain the solution space. BNNII takes advantage of this lack of information by adding additional informative constraints to the problem solution using Bayesian methodology. This paper extends BNNII, showing how ground truth information, information regarding the particular parameter contour under reconstruction, and information regarding the underlying physical process, can be seamlessly added to the problem solution. Remote sensing problems afford opportunities for inclusion of ground truth information, prior probabilities, noise distributions, and other informative constraints within a Bayesian probabilistic framework. We apply these Bayesian methods to a synthetic remote sensing problem, showing that the addition of ground truth information, which is naturally included through Bayesian modeling, provides a significant performance improvement

Published in:

IEEE Transactions on Signal Processing  (Volume:45 ,  Issue: 11 )