By Topic

Discriminative metric design for robust pattern recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Watanabe, H. ; Interpreting Telecommun. Res. Labs., Adv. Telecommun. Res., Kyoto, Japan ; Yamaguchi, T. ; Katagiri, S.

Motivated by the development of discriminative feature extraction (DFE), many researchers have come to realize the importance of designing a front-end feature extraction unit with an appropriate link to backend classification. This paper proposes an advanced formalization of DFE, which we call the discriminative metric design (DMD), and elaborates on its exemplar implementation by using a simple, linear feature transformation matrix. The resulting DMD implementation is shown to have a close relationship to various discriminative pattern recognizers, including artificial neural networks. The utility of the proposed method is clearly demonstrated in speech pattern recognition experiments

Published in:

Signal Processing, IEEE Transactions on  (Volume:45 ,  Issue: 11 )