By Topic

Numerically exact analysis of a two-dimensional variable-resistivity reflector fed by a complex-point source

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nosich, A.I. ; Inst. of Radiophys. & Electron., Acad. of Sci., Kharkov, Ukraine ; Yurchenko, V.B. ; Altintas, A.

Accurate numerical analysis of a two-dimensional (2-D) variable-resistivity reflector has been carried out by the method of regularization based on the analytical inversion of the corresponding static problem. The complex source-point model has been used to account for the directivity of the feeder and both the H- and E-polarization cases are considered. Far-field radiation patterns, directivity, and total radiative power have been computed for reflectors of uniform and nonuniform complex resistivities. The concept of edge loading for the control and improvement of antenna characteristics is confirmed by this numerically rigorous technique

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:45 ,  Issue: 11 )