By Topic

Task planning for a mobile robot in an indoor environment using object-oriented domain information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
S. Y. P. Chien ; Dept. of Electr. Eng., Purdue Univ., West Lafayette, IN, USA ; L. Q. Xue ; M. Palakal

For a mobile robot to be practical, it needs to navigate in dynamically changing environments and manipulate objects in the environment with operating ease. The main challenges to satisfying these requirements in mobile robot research include the collection of robot environment information, storage and organization of this information, and fast task planning based on available information. Conventional approaches to these problems are far from satisfactory due to their requirement of high computation time. In this paper, we specifically address the problems of storage and organization of the environment information and fast task planning in the area of robotic research. We propose an special object-oriented data model (OODM) for information storage and management in order to solve the first problem. This model explicitly represents domain knowledge and abstracts a global perspective about the robot's dynamically changing environment. To solve the second problem, we introduce a fast task planning algorithm that fully uses domain knowledge related to robot applications and to the given environment. Our OODM based task planning method presents a general frame work and representation, into which domain specific information, domain decomposition methods and specific path planners can be tailored for different task planning problems. This method unifies and integrates the salient features from various areas such as database, artificial intelligence, and robot path planning, thus increasing the planning speed significantly

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:27 ,  Issue: 6 )