By Topic

An algorithmic approach for fuzzy inference

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kim, C.J. ; Dept. of Electr. Eng., Suwon Univ., South Korea

To apply fuzzy logic, two major tasks need to be performed: the derivation of production rules and the determination of membership functions. These tasks are often difficult and time consuming. This paper presents an algorithmic method for generating membership functions and fuzzy production rules; the method includes an entropy minimization for screening analog values. Membership functions are derived by partitioning the variables into the desired number of fuzzy terms and production rules are obtained from minimum entropy clustering decisions. In the rule derivation process, rule weights are also calculated. This algorithmic approach alleviates many problems in the application of fuzzy logic to binary classification

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:5 ,  Issue: 4 )