Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

An ART-based fuzzy adaptive learning control network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cheng-Jian Lin ; Dept. of Control Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Chin-Teng Lin

This paper addresses the structure and an associated online learning algorithm of a feedforward multilayer neural net for realizing the basic elements and functions of a fuzzy controller. The proposed fuzzy adaptive learning control network (FALCON) can be contrasted with traditional fuzzy control systems in network structure and learning ability. An online structure/parameter learning algorithm, FALCON-ART, is proposed for constructing FALCON dynamically. It combines backpropagation for parameter learning and fuzzy ART for structure learning. FALCON-ART partitions the input state space and output control space using irregular fuzzy hyperboxes according to the data distribution. In many existing fuzzy or neural fuzzy control systems, the input and output spaces are always partitioned into “grids”. As the number of variables increases, the number of partitioned grids grows combinatorially. To avoid this problem in some complex systems, FALCON-ART partitions the I/O spaces flexibly based on data distribution. It can create and train FALCON in a highly autonomous way. In its initial form, there is no membership function, fuzzy partition, and fuzzy logic rule. They are created and begin to grow as the first training pattern arrives. Thus, the users need not give it any a priori knowledge or initial information. FALCON-ART can online partition the I/O spaces, tune membership functions, find proper fuzzy logic rules, and annihilate redundant rules dynamically upon receiving online data

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:5 ,  Issue: 4 )